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Abstract. Photonic materials structured on the scale of the wavelength of light have become
the subject of an active field of research fed by the hope of creating novel properties. Theory
plays a central role reinforced by the difficulty of manufacturing photonic materials: unusually
we are better able to design a photonic material than to build it. In this review we explore the
application of scattering theory to Maxwell’s equations that has enabled theory to make such a
central contribution: implementation of Maxwell’s equations on a discrete mesh, development
of the electromagnetic transfer matrix, order-N methods, and adaptive meshes. At the same time
we present applications to a few key problems by way of illustration, and discuss the special
circumstances of metallic photonic structures and their unique properties.

1. Introduction

As optics merges with electronics to fuel a revolution in computing and communication, it
is natural to compare and contrast electrons and photons. The former are for the moment
the more active members of the partnership, but for future progress we look increasingly
to photons. Electrons have enjoyed the advantage in this contest because of the ease
with which they can be controlled: piped down wires, stored in memories, or switched
from one channel to another. Semiconductors are the medium in which they operate, and
semiconductors enjoy their control of electronic properties because of diffraction effects in
the atomic lattice. Structure and function operate harmoniously together in these materials
to deliver the properties we need.

Photons also have a wave-like nature but on too large a scale to be diffracted by
atomic lattices. Therefore to a large extent they have escaped detailed engineering of their
properties. However, there is no reason that we should not artificially structure materials
on the scale of the wavelength of light to produce band gaps, defect states, delay lines
and other novel properties by analogy with the electron case. This agenda of reworking
semiconductor physics for the photon has been seized upon, largely by condensed-matter
theorists well versed in the intricacies of band theory.

It is a field for the moment chiefly populated by theorists as experiment struggles to
develop the complex technology required to give three-dimensional structure to a material
on the micron scale, even though there are some interesting optical structures prepared
by ‘self-assembly’ methods [1]. Theorists have been very active over the past five years
in developing the methodology of photonic band theory, and applying it to a variety of
systems. In this short review we shall scrutinize the new techniques from the standpoint
of a condensed-matter theorist, following an agenda very much inspired by electronic band
theory.
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We begin by discussing the peculiarities of Maxwell’s equations viewed from a
computational standpoint, and present some of the early solutions to this problem. Next we
show how to make a consistent adaptation of Maxwell’s equations to a discrete mesh and
develop perhaps the most powerful approach to the problem. Finite-difference equations
can be solved in several different ways. Transfer-matrix methods are widely used and
are efficient and accurate. More recently ‘order-N ’ methods have been developed and
are extremely efficient in some circumstances. One problem for photonic calculations is
that materials can be structured in a wide variety of different configurations, in contrast to
atomic lattices all of which have the same basic geometry. This leads us to considering
adaptive-mesh calculations in which the real-space mesh is adjusted to the geometry of the
material. Finally we discuss the special case of metallic photonic structures which have
some remarkable properties.

2. Maxwell’s equations on a computer

We are fortunate in photonic band theory in that the equations governing the photon’s
behaviour are somewhat better defined than for electrons. Maxwell’s equations in SI units
are (see Panofsky and Phillips [2], or Jackson [3])

∇ · D = ρ ∇ · B = 0

∇ × E = −∂B/∂t ∇ × H = +∂D/∂t + j
(1)

whereD is the electric displacement vector,E the electric field vector,B the magnetic
flux density,H the magnetic field intensity,ρ the charge density, andj the electric current
density. Most commonly we work at a fixed frequency, so

D(r, t) = D(r) exp(−iωt) E(r, t) = E(r) exp(−iωt)

B(r, t) = B(r) exp(−iωt) H(r, t) = H(r) exp(−iωt)

ρ(r, t) = ρ(r) exp(−iωt) j(r, t) = j(r) exp(−iωt).

(2)

Note the sign in the exponential: a common source of confusion between physicists and
engineers. We adopt the physicists’ notation here, of course. Substituting into Maxwell’s
equations gives

∇ · D = ρ ∇ · B = 0

∇ × E = +iωB ∇ × H = −iωD + j.
(3)

These equations taken together with the constitutive equations

D = εε0E B = µµ0H j = σE (4)

define the problem.
All the physics is contained inε, µ, σ, and for nearly all the problems of interest these

can be taken aslocal functions; that is to say the most general linear form reduces to

D(r) =
∫

ε(r, r′)ε0E(r′) d3r′ = ε(r)ε0E(r) etc. (5)

Non-locality results from atomic-scale processes and is only important when photonic
materials have relevant structure on an atomic scale. There are exceptions to this rule, for
example when excitonic effects are important, but these specialist topics are beyond the
scope of this review.

For some materials such as metals, the dielectric constant,ε, depends strongly on the
frequency in all frequency ranges. For many insulatorsε is constant in the optical region
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of the spectrum. However, it is an inevitable consequence of the properties of matter that
all materials show dispersion in some range of frequencies: commonly in the ultraviolet.

The first calculations of photonic band structure [4–8] addressed the problem of finding
the dispersion relationshipω(k) in a periodic structure often with the specific aim of finding
a ‘photonic insulator’ as first proposed in [9] (an excellent summary of some of these early
calculations is to be found in [10, 11]). It is usual to eliminate either the electric or the
magnetic component from Maxwell’s equations. For example, on the common assumption
that the permeability,µ, is everywhere unity, we can derive

∇ × ∇ × E = −∇2E + ∇(∇ · E) = +ω2c−2
0 εE (6)

where

c0 = 1√
ε0µ0

(7)

is the velocity of light in free space.
For condensed-matter theorists the resemblance of (6) to the Schrödinger equation is

illusory. Certainly the familiar ‘del-squared’ term is there, but the additional presence
of ∇(∇ · E) transforms the equation into a decidedly awkward customer from the
computational point of view. This second term is responsible for the elimination of the
longitudinal mode from the spectrum and ensures that any wave of the form

E` = Ak exp(ik · r) (8)

is always a solution of (6) provided that

ω`(k) = 0 (9)

which thus removes all longitudinal components from the finite-frequency spectrum.
However, under certain circumstances this longitudinal mode can return to haunt an ill
constructed computation.

The next step was to observe that the solutions for a periodic medium must take the
Bloch wave form, and therefore the electric field can be expanded in a discrete Fourier
series:

Ek(r) =
∑

g

{Esges + Epgep} exp[i(k + g) · r] (10)

whereg is a reciprocal-lattice vector and the two unit transverse vectors are defined by

es = [(k + g) × n]√
[(k + g) × n] · [(k + g) × ]

(11)

ep = [(k + g) × (k + g) × n]√
[(k + g) × (k + g) × n] · [(k + g) × (k + g) × n]

. (12)

Each of the two components of the field, ‘s’ and ‘p’, is constructed to be transverse to
the relevant wave vector. The Fourier expansion contains an infinite summation but, as for
electronic band structure, is truncated at some finite value of(k + g) chosen large enough
to ensure convergence. Conventionally the unit vector,n, is the normal to a surface of the
material, but could be chosen to be any arbitrary vector.

In this basis equation (6) becomes

|k + g|2Etg = +ω2c−2
0

∑
t ′g′

εtg;t ′g′Et ′g′ (13)
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where

εtg;t ′g′ = et (k + g) · et ′(k + g′)�−1
∫

ε(r) exp[i(g − g′) · r] d3r (14)

and the integration is over the volume,�, of the unit cell.
Provided thatε does not depend onω, equation (13) is a generalized eigenvalue equation

and can be solved forω(k) by conventional techniques.

Figure 1. ‘Yablonovite’: a slab of material is covered by a mask consisting of a triangular array
of holes. Each hole is drilled through three times, at an angle 35.26◦ away from normal, and
spread out 120◦ on the azimuth. The resulting criss-cross of holes below the surface of the slab,
suggested by the cross-hatching shown here, produces a fully three-dimensionally periodic fcc
structure.

This technique and closely related ones were used to calculate the first photonic
band structures. For example we see in figure 2 the band structure of the ‘Yablonovite’
structure (figure 1) calculated by this technique using several thousand plane waves in the
expansion [6].

This was the first structure to show an absolute band gap and gave great impetus to the
subject. So far the structure has not been realized experimentally at visible wavelengths, but
a microwave version has been built and measured. This is already sufficient confirmation
of the validity of the theory because Maxwell’s equations obey a scaling law. If a structure
ε(r) sustains a solution of Maxwell’s equations,Ek(r),

−∇2E(r) + ∇(∇ · E(r)) = +ω2c−2
0 ε(r)E(r) (15)

then we can deduce a solution to a different problem by making the substitution

r′ = r/a (16)

so that

−∇′2E(ar′) + ∇′(∇′ · E(ar′)) = +a2ω2c−2
0 ε(ar′)E(ar′). (17)

The transformed equation tells us that a new photonic structure in which all the length
scales have been expanded bya sustains a solution whose frequency is less than the original
by the same factora. So if an experimental structure has an absolute gap in the GHz band,
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Figure 2. Frequency versus wave-vector dispersion along various directions in fcck-space,
wherec0/b is the speed of light divided by the fcc cube length. The ovals and triangles are the
experimental points for s and p polarization respectively. The full and broken curves are the
calculations for s and p polarization respectively. The dark-shaded band is the totally forbidden
band gap. The lighter-shaded stripes above and below the dark band are forbidden only for s
and p polarization respectively.

the frequency of that gap will scale upwards as the lattice spacing of the structure is scaled
down. Our argument assumes thatε is not a function of frequency.

This method of solution has a number of advantages.

• It gives a stable and reliable algorithm for computingω(k).

• The computer programming required is minimal and can draw extensively on standard
methodologies such as Fourier transformation and matrix diagonalization.

• The longitudinal mode causes no numerical problems because it is projected out of the
equations at an early stage.

• An arbitrary ε(r) can be handled since no assumptions are made about the shape of
objects.

Therefore it was an excellent way to start a serious study of the subject. However, there
are some situations in which the method runs into difficulties. Some examples are given
below.

• If ε happens to depend onω then equation (13) is no longer an eigenvalue equation,
but something much more complicated and difficult to handle. The problem stems from
the methodology of fixingk, then calculatingω.

• Experiments commonly measure quantities such as reflection coefficients at a fixed
frequency and to calculate these we need all the Bloch waves at that frequency, i.e. again
we need to fixω and calculatek, not the other way round.

• A plane-wave expansion of the wave field is rather inefficient and renders calculations
for the more complex structures impossibly time consuming. (Matrix diagonalization
scales as the cube of the number of plane waves.)
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• The latter problem is particularly acute in situations where several different length scales
are forced upon us. For example when an electromagnetic wave is incident on a metal
surface the scale of the penetration depth and the wavelength in vacuum can differ by
many orders of magnitude, and yet the Fourier components have to reproduce both to
good accuracy.

These are difficulties which are also encountered in electronic band structure and have
been countered with techniques which can also be applied to the photonic case.

3. Maxwell’s equations on a lattice

The two classic models of electronic band structure are the ‘nearly-free-electron
approximation’ and the ‘tight-binding model’. They start from completely different
standpoints: the former assumes that plane waves are a good approximation to the electron
wave function, the latter that electrons interact strongly with the atoms and only occasionally
hop across the space between one atom and the next. Both have been developed as the
basis for more accurate and sophisticated models. The plane-wave expansions discussed
above are the obvious counterparts of the nearly-free-electron model. But it is also possible
to find a tight-binding analogy for the photon case. We do this by choosing to represent the
photon wave field on a discrete lattice of points in real space. This has several pitfalls and
has to be done carefully, but when successfully completed it has many rewards in terms of
speed of computation.

The original derivation by MacKinnon and Pendry (see [12, 13]) was made with a view
to extending MacKinnon’s successful tight-binding models of disordered electronic systems
to the photon case, but has in fact had much wider application to ordered systems. Of course,
the main problem in representing differential equations on a lattice is in approximating the
derivatives. For Maxwell’s equations we have another problem: they have the property that
all longitudinal modes are ‘dead modes’, appearing only as zero-frequency solutions. This
fundamental property, which has at its heart the conservation of charge, must be preserved
in a valid scheme of approximations.

We start from equation (3) and Fourier transform to give

k × E = +ωµ0H k × H = −ωε0

∫
ε(k, k′)E(k′) d3k′ (18)

where we have assumed that we are inside a dielectric medium where

µ = 1 ρ = j = 0. (19)

Note that the ‘dead-mode’ property holds for a more general class of equations:

κE(k) × E = +ωµ0H κH (k) × H = −ωε0

∫
ε(k, k′)E(k′) d3k′ (20)

since, from above,

(κH (k) · κE(k))E(k) − κH (k)[κE(k) · E(k)] = +ω2c−2
0

∫
ε(k, k′)E(k′) d3k′ (21)

and choosing

E`(k) = AκH (k) (22)

always gives the result

ω`(k) = 0. (23)
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The idea is that if we chooseκE(k) andκH (k) so that they have simple representations
in real space in terms of difference equations, and so that they approximate the exact
equations, we shall have obtained a real-space approximation that exactly fulfils the ‘dead-
mode’ requirement. Ink-space the differential operators transform exactly to

∂E(r)

∂x
↔ ikxE(k) etc. (24)

However, there is a closely related transformation

a−1[E(r + ax̂) − E(r)] ↔ (ia)−1[exp(ikxa) − 1]E(k) etc. (25)

So if we choose

κEx(k) = (+ia)−1[exp(+ikxa) − 1] ≈ kx + O(k2
xa)

κHx(k) = (−ia)−1[exp(−ikxa) − 1] ≈ kx + O(k2
xa)

(26)

and substitute into equation (20), and transform back into real space, we have

+[Ez(r + b) − Ez(r)] − [Ey(r + c) − Ey(r)] = +iaωµ0Hx(r)

+[Ex(r + c) − Ex(r)] − [Ez(r + a) − Ez(r)] = +iaωµ0Hy(r) (27a)

+[Ey(r + a) − Ey(r)] − [Ex(r + b) − Ex(r)] = +iaωµ0Hz(r)

−[Hz(r − b) − Hz(r)] + [Hy(r − c) − Hy(r)] = −iaωε0ε(r)Ex(r)

−[Hx(r − c) − Hx(r)] + [Hz(r − a) − Hz(r)] = −iaωε0ε(r)Ey(r) (27b)

−[Hy(r − a) − Hy(r)] + [Hx(r − b) − Hx(r)] = −iaωε0ε(r)Ez(r)

and we retrieve a set of finite-difference equations. In these equationsa, b, c represent
displacements through a distancea along thex, y, z axes respectively. Further inspection
will reveal that the lattice on which we sample the fields is a simple cubic lattice: fields on
each site are coupled to the six neighbouring sites of this lattice.

Equations (27), (28) are the counterparts of the nearest-neighbour tight-binding
approximation familiar in quantum mechanics, but derived from Maxwell’s equations. In
fact we can formulate them to resemble a Hamiltonian even more closely:∑

t ′ r′
Htt ′(r, r′)Ft ′(r

′) = ωFt(r) (28)

where

F (r) =


Ex(r)

Ey(r)

Ez(r)

Hx(r)

Hy(r)

Hz(r)

 . (29)

In the limit of very smalla, relative to the wavelength of radiation, they are an exact
representation. Note that the approximations have all to do with the differential operators;
therefore we can get an impression of how accurate the equations are by asking how well
they represent free space, where

ε = 1. (30)
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In this case equation (21) gives

a−2

[
κEyκHy + κEzκHz −κExκHy −κExκHz

−κEyκHx κExκHx + κEzκHz −κEyκHz

−κEzκHx −κEzκHy κExκHx + κEyκHy

] [
Ex

Ey

Ez

]

= ω2c−2
0

[
Ex

Ey

Ez

]
. (31)

If we calculate the dispersion fork directed along thex axis,

κEx(k) = (+ia)−1[exp(+ikxa) − 1] κEy(k) = 0 κEz(k) = 0

κHx(k) = (−ia)−1[exp(−ikxa) − 1] κHy(k) = 0 κHz(k) = 0
(32)

we get

ω2 = c2
0a

−24 sin2( 1
2kxa). (33)

Obviously this reduces to the correct limit whena is small:

ω2 = c2
0k

2
x [1 + 1

2k2
xa

2 + · · ·]. (34)

This real-space formulation of the problem as set out in (27), (28) can be used as an
alternative to thek-space version described in the last section when computing the band
structure. However, this is not the best way forward as the real-space formulation offers
some efficient alternatives to straightforward matrix diagonalization. The efficiency of these
new methods is owing to the sparse nature of equations (27), (28).

As we point out above, the accuracy of the real-space formulation is limited by the
mesh size. The situation can be improved, at the expense of simplicity, by devising a more
accurate approximation tok. For example we can improve on (26) as follows:

κ ′
Ex(k) = (+ia)−1[− 1

2 exp(+ikxa) + 2 exp(+2ikxa) − 3
2] ≈ kx + O(k3

xa
2)

κ ′
Hx(k) = (−ia)−1[− 1

2 exp(−ikxa) + 2 exp(−2ikxa) − 3
2] ≈ kx + O(k3

xa
2).

(35)

Transformation into real space of the resulting equations gives difference equations
coupling beyond the nearest neighbours to second-nearest neighbours of a simple cubic
lattice. Taking higher orders of the expansion ofkx in terms of [exp(+ikxa) − 1] gives
more accurate approximations and more complex formulae. Of course the computer has
no objection to complex formulae, but the benefits of a more accurate approximation that
allows us to use fewer sampling points must be balanced against the disadvantage that the
matrix grows less sparse as the number of nearest-neighbour couplings rises.

Finally in this section, a word about the type of lattice on which we sample the fields.
It might be imagined that we could make a more accurate approximation by choosing a
more complex lattice of sampling points: fcc instead of sc perhaps? Although it is true
that we can do better in terms of improved approximations tokx, ky, kz, the more complex
lattices usually have some subtle but fatal disadvantages. A detailed discussion is beyond
the scope of this review, but has to do with introduction of spurious solutions in addition to
the ones we seek. These mix with the desired solutions to introduce numerical instabilities.
In this instance a simple cubic lattice has virtues of stability and robustness. It should not
be abandoned lightly.
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4. How to solve the discrete Maxwell equations using transfer matrices

Many of the experiments with which we shall be concerned were made at fixed frequency.
This certainly makes life simpler in materials where the dielectric function depends onω:
ε(ω) can immediately be specified. And there is a further advantage in that we can employ
one of the efficient ‘on-shell’ methodologies. In this context the term ‘on-shell’ means that
the calculation is confined to a surface or shell in configuration space on which all the states
have the same frequency. On-shell methods have commonly been employed in low-energy
electron diffraction theory [14]. The analogy with LEED has also been used by Stefanou
et al [15], and the transfer-matrix approach has been addressed in a different context by
Russellet al [16].

Figure 3. A plan view of the mesh on which the fields are sampled showing the orientation of
the axes. Two planes of points are marked by dashed lines: at a fixed frequency the fields on
these two sets of planes are related by Maxwell’s equations, so if we know the fields on one of
the planes, we can calculate the fields on the other.

Looking back to equations (27), (28): ifω is fixed the equations specify a relationship
between fields on different sites of the sampling mesh. For example in figure 3 we see a
plan view of the sampling mesh. Two sets of planes are marked by dashed lines and if
we know the fields on one of these planes we can infer the fields on the other by virtue
of equations (27), (28). In fact if we consider a slab of material, then specifying fields on
a single plane on one side of the sample infers the fields at all points within the sample.
At fixed frequency, given the fields on one side of a sample we cantransfer the fields
throughout the whole sample by successively applying Maxwell’s equations. This result is
no more that the discrete equivalent of the well know result for differential equations: if we
specify the boundary conditions, then we can integrate the equations throughout the sample.

The detailed derivation of this result from (27), (28) is elementary but tedious and the
reader is referred to [12] for details. The result is

Ex(r + c) = Ex(r) + icωµ0µ(r)Hy(r) + i

aωε0ε(r)

[ +{Hy(r − a) − Hy(r)}
−{Hx(r − b) − Hx(r)}

]
− i

aωε0ε(r + a)

[ +{Hy(r) − Hy(r + a)}
−{Hx(r + a − b) − Hx(r + a)}

]
(36a)
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Ey(r + c) = Ey(r) − icωµ0µ(r)Hx(r) + i

aωε0ε(r)

[ +{Hy(r − a) − Hy(r)}
−{Hx(r − b) − Hx(r)}

]
− i

aωε0ε(r + b)

[ +{Hy(r − a + b) − Hy(r + b)}
−{Hx(r) − Hx(r + b)}

]
(36b)

Hx(r + c) = Hx(r) − icωε0ε(r + c)Ey(r + c)

+ i

aωµ0µ(r − a + c)

[ +{Ey(r + c) − Ey(r − a + c)}
−{Ex(r − a + b + c) − Ex(r − a + c)}

]
− i

aωµ0µ(r + c)

[ +{Ey(r + a + c) − Ey(r + c)}
−{Ex(r + b + c) − Ex(r + c)}

]
(36c)

Hy(r + c) = Hy(r) + icωε0ε(r + c)Ex(r + c)

+ i

aωµ0µ(r − b + c)

[ +{Ey(r + a − b + c) − Ey(r − b + c)}
−{Ex(r + c) − Ex(r − b + c)}

]
+ i

aωµ0µ(r + c)

[ +{Ey(r + a + c) − Ey(r + c)}
−{Ex(r + b + c) − Ex(r + c)}

]
. (36d)

Notice that we work with only two components of each of the fields. The third
component is inferred from the ‘dead longitudinal mode’ which we carefully built into
our equations:

−(ia)−1[Hy(r − a) − Hy(r)] + (ia)−1[Hx(r − b) − Hx(r)] = −ωε0ε(r)Ez(r)

+(ia)−1[Ey(r + a) − Ey(r)] − (ia)−1[Ex(r + b) − Ex(r)] = +ωµ0µ(r)Hz(r).
(37)

Equations (36) define the transfer matrix:
Ex(r + c)

Ey(r + c)

Hx(r + c)

Hy(r + c)

 =
∑
r′


T11(r, r′) T12(r, r′) T13(r, r′) T14(r, r′)
T21(r, r′) T22(r, r′) T23(r, r′) T24(r, r′)
T31(r, r′) T32(r, r′) T33(r, r′) T34(r, r′)
T41(r, r′) T42(r, r′) T43(r, r′) T44(r, r′)




Ex(r
′)

Ey(r
′)

Hx(r
′)

Hy(r
′)


(38)

where the summation is over all points in a plane.
In the case where we have a periodic structure which repeats afterLz cells we can relate

the fields on either side of the unit cell and exploit this to calculate the band structure:
Ex(r+Lzc)

Ey(r+Lzc)

Hx(r+Lzc)

Hy(r+Lzc)

 =
∑
r′

T(Lz, 0)


Ex(r

′)
Ey(r

′)
Hx(r

′)
Hy(r

′)

 (39)

where

T(Lz, 0) =
Lz∏

j=1

T(j, j − 1). (40)

Hence on applying Bloch’s theorem to the periodic structure,
Ex(r+Lzc)

Ey(r+Lzc)

Hx(r+Lzc)

Hy(r+Lzc)

 = exp(iKzLza)


Ex(r)

Ey(r)

Hx(r)

Hy(r)

 (41)
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we identify the Bloch waves as eigenvectors of the transfer matrix:

∑
r′

T(Lz, 0)


Ex(r

′)
Ey(r

′)
Hx(r

′)
Hy(r

′)

 = exp(iKzLza)


Ex(r)

Ey(r)

Hx(r)

Hy(r)

 . (42)

Thus we can find all the Bloch waves at a givenfrequency. Contrast this with equation
(13) which gives all the Bloch waves at a fixedwave vector. Obviously (42) has the
advantage ifε depends onω since the eigenvalue equation remains unchanged becauseω

has already been specified, so we know what value ofε to write in the equations.
Transfer-matrix methods have another advantage in that they generally work with smaller

matrices than would otherwise be required. Suppose that we have a periodic system in which
the unit cell is subdivided into a mesh of 10×10×10 sampling points. We could diagonalize
equations (27), (28) to find the eigenfrequencies of the system. The relevant matrices
would have dimensions 6000× 6000 reflecting the 6000 independent field components
of the system. This would be a huge numerical calculation requiring the services of a
supercomputer. Transforming intok-space would bring no relief because to give a similar
level of precision (13) would have to employ a similar number of plane waves in the Fourier
expansion. In contrast, transfer matrices for this system have dimensions 400× 400 and
can easily be diagonalized on a workstation or even a highly specified personal computer.

We can calculate the scaling of computing times with size of system. For off-shell
methods

τoff shell ∼ (LxLyLz)
3 (43)

whereas for on-shell methods

τon shell ∼ (LxLy)
3Lz (44)

representing a considerable saving of time in systems which require many layers of mesh
points to describe their structure. In our example above the saving is approximately a factor
of 102 = 100.

Because they calculate all the states at a given frequency, transfer-matrix methods are
very well suited to calculating the scattered wave field from a complex object, and it was
transfer-matrix methods which opened up this aspect of the subject. Robertsonet al [17]
have measured the response of a photonic system in the microwave band. Their structure
consisted of an array of cylinders and is shown in figure 4.

In [13] the unit cell of the system was divided into a 10× 10 × 1 mesh: for each
cell an average was taken over the dielectric constant within that cell. The transfer matrix
was found by multiplying the matrices for each of the ten slices. Its eigenvalues give
Kz(ω, Kx, Ky). For the transmission coefficient a similar division of the cell was made, but
multiplying transfer matrices for the seven layers of unit cells would have led to numerical
instability, so instead multiplication was halted after integrating through one unit cell at
which point the transmission and reflection coefficients were calculated for a slab one cell
thick. Slabs were then stacked together using the multiple-scattering formula familiar in
the theory of low-energy electron diffraction [14]. Convergence was tested by repeating the
calculation for a 20× 20 × 1 mesh: changes of the order of 1% at 80 GHz were found
in the band structure. The results are shown compared to the experiment in figure 5. The
computer codes used in this calculation have been published [18].
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Figure 4. A schematic version of the microwave experiment performed by Robertsonet al.
Microwaves are incident on a simple cubic array of cylinders, withε = 8.9, seven layers
deep but effectively infinite in the directions perpendicular to the beam. The amplitude of the
transmitted beam is measured.

5. How to solve the discrete Maxwell equations using ‘order-N ’ methods

When handling very large systems, the way in which computing times scale with system
size is the determining factor in their efficiency. Obviously the optimum scaling of a system
with N independent components must be proportional toN because it would take at least
this time to write down the problem. As computers have become more powerful and able
to treat very large systems the importance of achieving an ‘order-N ’ methodology has been
realized.

In the electron band-structure problem such methodologies have been realized for tight-
binding systems in which the Hamiltonian reduces to a sparse matrix. Formally containing
N2 elements, the Hamiltonian would appear to lead to computation times at least as large
asN2 but is saved from this fate by only order-N components being non-zero. Therefore
any method based on a finite number of matrix×vector multiplications, which are now of
orderN , gives the desired optimum scaling.

In the context of photonic band structure the formulation of order-N methodologies
awaited construction of a tight-binding formalism. The real-space formulation described in
section 3 gives rise to sparse matrices in exactly the desired manner. Each matrix defined
by (27), (28) contains components whereN is the number of mesh points in the system.
These possibilities were first exploited by Chan, Yu, and Ho [19].

The idea is as follows: if we start with a set of fields, arbitrary except in that they obey
the Bloch condition for wave vectorK:

EK(t = 0) HK(t = 0) (45)

and use Maxwell’s equations to calculate their time evolution, we can in effect find the band
structure of the system. Since we know that we can expand the arbitrary fields in terms of
the Bloch waves:

EK(t) =
∑

j

bKjEj exp(−iωKj t) HK(t) =
∑

j

bKjHj exp(−iωKj t). (46)

Hence Fourier transforming the fields with respect to time picks out a series of delta



Calculating photonic band structure 1097

Figure 5. Left: the dispersion relation for propagation of electromagnetic waves along the (10)
direction of a 2D array of dielectric cylinders. (a)E perpendicular to the cylinders; (b)E
parallel to the cylinders. The experimental results are shown as black dots and have a resolution
of 5 GHz. Note that very narrow bands are not resolved experimentally. Right: the transmitted
power for an array of seven rows of dielectric cylinders. The dotted curve shows the instrument
response in the absence of the cylinders. Upper curves (a):E perpendicular to the cylinders;
lower curves (b):E parallel to the cylinders.

functions located at the Bloch wave frequencies. The resolution of these frequencies depends
on the time interval over which integration proceeds. One must be careful that the starting
fields contain a finite component of the desired Bloch wave.

We need to reformulate Maxwell’s equations so as to represent them not only on a mesh
which is discrete in space, but also on one that is discrete in time. To do this we go back
to (27), (28) and further approximate these equations so that when transformed back into
the time domain, they result in finite-difference equations. We use the same tricks that we
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used in the spatial case. The approximation

wE = (−iT )−1[exp(−iωT ) − 1] ≈ ω wH = (+iT )−1[exp(+iωT ) − 1] ≈ ω (47)

gives a set of equations that conserve energy as before:

+[Ez(r + b) − Ez(r)] − [Ey(r + c) − Ey(r)] = +iawHµ0Hx(r)

+[Ex(r + c) − Ex(r)] − [Ez(r + a) − Ez(r)] = +iawHµ0Hy(r) (48a)

+[Ey(r + a) − Ey(r)] − [Ex(r + b) − Ex(r)] = +iawHµ0Hz(r)

−[Hz(r − b) − Hz(r)] + [Hy(r − c) − Hy(r)] = −iawEε0ε(r)Ex(r)

−[Hx(r − c) − Hx(r)] + [Hz(r − a) − Hz(r)] = −iawEε0ε(r)Ey(r) (48b)

−[Hy(r − a) − Hy(r)] + [Hx(r − b) − Hx(r)] = −iawEε0ε(r)Ez(r)

and in the time domain

+[Ez(r + b, t) − Ez(r, t)] − [Ey(r + c, t) − Ey(r, t)]

= + aT −1µ0Hx(r, t − T ) − Hx(r, t)

+[Ex(r + c, t) − Ex(r, t)] − [Ez(r + a, t) − Ez(r, t)]

= + aT −1µ0[Hy(r, t − T ) − Hy(r, t)] (49a)

+[Ey(r + a, t) − Ey(r, t)] − [Ex(r + b, t) − Ex(r, t)]

= + aT −1µ0[Hz(r, t − T ) − Hz(r, t)]

−[Hz(r − b, t) − Hz(r, t)] + [Hy(r − c, t) − Hy(r, t)]

= + aT −1ε0ε(r)[Ex(r, t + T ) − Ex(r, t)]

−[Hx(r − c, t) − Hx(r, t)] + [Hz(r − a, t) − Hz(r, t)]

= + aT −1ε0ε(r)[Ey(r, t + T ) − Ey(r, t)] (49b)

−[Hy(r − a, t) − Hy(r, t)] + [Hx(r − b, t) − Hx(r, t)]

= + aT −1ε0ε(r)[Ez(r, t + T ) − Ez(r, t)].

These equations can be used to advance the fields in time steps ofT .

Figure 6. The unit cell of the photonic structure consisting of a series of cylinders, with
ε = 12.96, connecting the points of a diamond lattice. The diameter of the cylinders is adjusted
so that they occupy 20% of the volume. To simplify the figure the lattice points are shown as
circles, and the cylinders are not drawn to scale.
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Figure 7. The spectral intensity at the X point of the diamond structure. The frequency is given
in units of c0/b whereb is the lattice constant.

Using methods similar to the one described above, Chanet al made calculations for
a structure shown in figure 6: an array of cylinders packed in a diamond lattice with
periodic boundary conditions imposed on the starting wavefunction. The sampling grid was
a 48× 48× 48 mesh. The time interval used wasT = 0.003b/c0 whereb is the lattice
constant, and the integration continued through 105 steps.

Figure 8. The photonic band structure of a diamond structure generated with the spectral
method. The frequency is given in units ofc0/b whereb is the lattice constant.

The time sequence was the Fourier analysed to give the spectrum shown in figure 7
where the boundary conditions are set for the X point in the Brillouin zone. Repeating the
exercise for otherK-points results in the band structure shown in figure 8.
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These results were checked against calculations made using a plane-wave expansion and
agreed very well. The main difference was the length of time taken to make the calculation.

The time evolution method has a further advantage over the plane-wave expansion
methods, one which it shares with transfer-matrix methods: it can be used to calculate
reflection coefficients of objects by choosing the initial condition to be a pulse of radiation
incident on the object in question, allowing the pulse to evolve with time until it has finished
interacting with the object, then Fourier transforming the result to get the response at each
frequency.

The time taken for calculations using the time evolution operator is proportional to

τtime evol = (number of mesh points) × (number of time steps) (50)

and hence is ‘orderN ’ if N is taken to be the number of mesh points and the number of
time steps is independent ofN . The latter condition is fulfilled for a wide class of systems:

• when absorption is finite, so any incident radiation is removed after a finite interval of
time;

• when the system scatters only weakly, so radiation escapes from the system after a finite
length of time.

However, there are situations where the number of time steps does depend on the number
of mesh points. For example in a large system in which no absorption is present, radiation
can scatter to and fro within the system-defining structure on an increasingly fine frequency
scale, and requiring many time steps before it can be resolved. This happens in so-called
‘Anderson localized’ systems where radiation can only escape from a disordered system in
a time which increases exponentially with system size. It also is the case for ‘defect states’
enclosed within a photonic band-gap material—at least if we wish to estimate the lifetime
of the defect which grows exponentially with system size. For this class of system, methods
based on the time evolution operator have a disastrous scaling law:

τtime evol(localized system) = (number of mesh points) × exp(number of mesh points).

(51)

Not surprisingly these methods are not used to study Anderson localization where
transfer-matrix techniques are the order of the day.

In a system which is not localized, in which there are no photonic band gaps and
radiation diffuses around a complex structure, the time to escape will be determined by the
diffusion equation and be proportional to the square of the linear dimensions:

τtime evol(delocalized)

= (number of mesh points) × (number of mesh points)2/3

= (number of mesh points)4/3. (52)

Although not ‘orderN ’, this is still a very favourable scaling law.

6. Maxwell’s equations on a non-uniform mesh

By and large, electronic structure calculations all deal with the same basic structure: an
assembly of atomic potentials. Although this presents its own difficulties, it sits in contrast
to the very wide variety of structures and of materials with which we work in photonic
band structure. Most of the methods described above work well in situations where there
is only one length scale. For example in the array of dielectric cylinders shown in figure 4,
electric and magnetic fields can be described accurately by sampling on a uniform mesh.
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Figure 9. At a vacuum–metal interface there is a scale change in the wave field. In the vacuum,
the scale is determined by the wavelength, and in the metal by the skin depth.

In contrast, systems which contain metals with finite conductivity have two length scales:
the wavelength of radiation outside the metal, and the skin depth inside, often differing by
many orders of magnitude: see figure 9. Unless the wave field is correctly described inside
the metal, estimates of energy dissipation will be in error. This requires either an impossibly
dense uniform mesh, or a non-uniform mesh adapted to the shape of the metal.

Figure 10. An adaptation of the simple cubic mesh to the geometry of a fibre. Thez component
of the mesh can be taken to be uniform.

Another instance where a uniform mesh is inappropriate occurs when the material
has some symmetry which is relevant to its function but which is incompatible with the
symmetry of a uniform simple cubic mesh. For example, in an optical fibre, cylindrical
symmetry is a central concept. Here we may wish to choose a cylindrical mesh adapted to
this symmetry as shown in figure 10.

At first sight it may seem that we have a very tiresome task ahead of us: that of
reworking all our formalism for every different mesh we encounter. In fact we are saved
by a most elegant result: if Maxwell’s equations are rewritten in a new coordinate system
they take exactly the same form as in the old system provided that we renormalize, and
according to a simple prescription [20]. This affords a huge saving in programming effort
because it reduces what appears to be a new problem to an old one: that of solving for the
wave field on a uniform mesh in a non-uniform medium.
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Consider a general coordinate transformation:

q1(x, y, z) q2(x, y, z) q3(x, y, z). (53)

After some algebra we can rewrite Maxwell’s equations in the new system:

(∇q × Ê)i = −µ0

3∑
j=1

µ̂ij ∂Ĥj

∂t
(54a)

(∇q × Ĥ)i = +ε0

3∑
j=1

ε̂ij ∂Êj

∂t
(54b)

which as promised are identical to the familiar equations written in a Cartesian system of
coordinates. The renormalized quantities are

ε̂ij = εgij |u1 · (u2 × u3)|Q1Q2Q3(QiQj )
−1 (55a)

µ̂ij = µgij |u1 · (u2 × u3)|Q1Q2Q3(QiQj )
−1 (55b)

whereu1, u2, u3 are three unit vectors pointing along theq1, q2, q3 axes respectively, and

g−1 =
 u · u1 u · u2 u · u3

u · u1 u · u2 u · u3

u · u1 u · u2 u · u3

 (56)

Qij = ∂x

∂qi

∂x

∂qj

+ ∂y

∂qi

∂y

∂qj

+ ∂z

∂qi

∂z

∂qj

(57)

Q2
i = Qii. (58)

This result has great value in calculations based on real-space methods as it enables all
the original computer programs written for a uniform mesh to be exploited without change
when an adaptive mesh is employed. Less obviously it is also of value in the plane-wave
expansion methods too: all that is necessary is to apply the plane-wave expansion inq-
space to the new version of Maxwell’s equations and all the benefits of the adaptive mesh
accumulate in the enhanced convergence of the Fourier expansion.

We remark in passing that similar transformations can be used in the case of the
Schr̈odinger equation which also retains its form under a coordinate transformation.
However, in this case one must consider the most general form which includes a vector
potential as well as a scalar potential because curvature of the coordinate system implies an
effective magnetic field.

Equations (54) raise an intriguing possibility. Suppose that we set up a coordinate
system in free space that is non-uniform in some finite region of space, but far away from
this region reverts to a uniform Cartesian system. Obviously the results of any scattering
experiment in which radiation enters the region in question from infinity cannot depend on
the choice of coordinate system. Whatever system we choose, must return the result that
radiation is not scattered by what after all remains free space.

Now let us change our viewpoint. Suppose that the ‘real system’ contains a material
for which

ε̂ij = gij |u1 · (u2 × u3)|Q1Q2Q3(QiQj )
−1

µ̂ij = gij |u1 · (u2 × u3)|Q1Q2Q3(QiQj )
−1.

(59)

Then the electromagnetic influence of the medium can be undone by the reverse coordinate
transformation: we can find a system in whichε andµ are everywhere unity and which has
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no observable influence on electromagnetic radiation. The object in question is therefore
invisible.

In fact the restriction that the coordinate transformation be embedded in a flat 3-space
is a considerable one, and for most objects we cannot completely undo their scattering in
this way even if the other condition we require:

ε = µ (60)

is met. However, there are instances where this is possible: a sheet of material is perfectly
non-reflecting to normally incident radiation provided that condition (60) is true. This
observation is the basis of much stealth technology since only radar signals at normal
incidence have a chance of returning to the transmitter.

Figure 11. The lowest three modes of a 10−4 m radius cylindrical metal waveguide for angular
momentumm = 0, plotted against wave vector [20]. The full lines are the results of a numerical
calculation using a cylindrical mesh; the dotted lines are the exact results of analytic theory.

Finally we show in figure 11 this scheme in action for a cylindrical waveguide with
perfect metal boundaries. One advantage of the cylindrical mesh is that angular momentum
is now a good quantum number in the computation, and in addition cylindrical symmetry
can be exploited to speed up the calculation. The computations are compared to the analytic
result and show that the distorted mesh shows the same excellent convergence as the original
uniform version.
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7. Metallic photonic structures

Metals are different. Although their properties can be represented by an effective dielectric
function they are unique amongst materials in that this function can be essentially negative.
For example, nearly-free-electron metals such as aluminium can be modelled by

ε(ω) = 1 − ω2
p

ω(ω + iγ )
(61)

whereωp is the plasma frequency, andγ is related to the conductivity,σ , by

γ = ω2
pε0

σ
. (62)

If the conductivity is large, andω is below the plasma frequency, thenε(ω) is essentially
negative. This seemingly innocent property of a metal has a profound impact on its electro-
magnetic properties.

Let us work in the electrostatic limit, ignoring retardation for the moment. We have the
requirement that

∇ · D(r) = ∇ · [ε(r)∇φ(r)] = 0 (63)

whereD is the displacement field andφ is the scalar potential. Normally this implies that
there are no localized electrostatic modes in the absence of external charge, and that in
the presence of external charges the fields are unique: see p 42 of [2]. Consider a system
containing no external charges, but which contains a localized region whereε is non-unity.
Enclose the region by a surface0 which lies arbitrarily far from the region of interest.
Normally we can show that if the potential and its gradient on this surface are zero, then
the fields everywhere are zero. In other words, fields inside the surface have to be induced
by sources outside the surface, whose fields will pass through the surface itself. Consider∫

0

φ(ε0ε∇φ) · dS = 0 (64)

which is zero in the limit in which the surface is infinitely far from the region containing
the electrostatic activity. From Gauss’s theorem this implies

0 =
∫

V

φ∇ · (ε0ε∇φ) + ε0ε(∇φ) · (∇φ) dV

=
∫

V

φ∇ · D + ε0εE · E dV =
∫

V

ε0εE · E dV. (65)

If ε is everywhere positive, then the implication is that

E = 0 everywhere. (66)

However, if the surface0 encloses a photonic metallic structure within whichε is alternately
negative and positive in different parts of the structure, then the theorem no longer holds.
Metallic systems may support localized resonances whose fields are entirely confined to the
photonic region, at least in the electrostatic limit. In fact these modes can be thought of as
originating in surface plasmons [21] decorating the surfaces of the photonic structure, often
shifted in frequency by strong interaction between one surface and another. These localized
resonances are a dominant feature of structured metallic systems as discussed by Lambet
al [22].

One further general result is of interest. It concerns the frequencies of these localized
resonances. If we have a non-zero solution to equation (63), then by making the substitution

r = αr′ (67)
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we can find another solution:

0 = ∇ · D(r) = ∇ · [ε(ω, r)∇φ(r)] = α−1∇′ · [ε(ω, αr′)α−1∇′φ(αr′)] (68)

and therefore

∇ · [ε(ω, αr)∇φ(αr)] = 0 (69)

so having found a localized resonance for one structure at a frequencyω, we know that
all structures with the same shape have a resonance at exactly the same frequency. This is
because Laplace’s equation contains no natural length scale.

If we now generalize away from the electrostatic limit, the localized resonances will
in general couple to externally incident electromagnetic radiation. If the photonic structure
is on a scale much finer than the wavelength, the coupling will be relatively small and
therefore the size of the structure does in fact change the nature of the resonances if we go
beyond the electrostatic limit: it alters the external coupling of the localized modes.

Figure 12. An ordered simple cubic structure composed of 16Å diameter aluminium spheres,
with lattice spacing 52.9̊A.

A good illustration of these effects is seen in an ‘ordered colloid’ as shown in figure 12.
Aluminium has a plasma frequency of 15 eV and in the first instance we shall assume

no dissipation from electrical resistance so that we can substitute into (61)

ωp = 15 eV γ = 0. (70)

We are now in a position to calculate the photonic band structure of this object which is
shown in figure 13, taken from [12].

As we predicted, the presence of structured metal introduces a host of resonances into the
system, here manifesting themselves as very flat bands which, again as predicted, hybridize
weakly with the transverse modes which intersect them. A structure with twice the lattice
spacing and twice the sphere diameter would show very similar structure but would have
stronger interaction with the transverse modes.

Reintroducing the electrical resistance of the metal leads to the localized resonances
now being able to dissipate energy and, since there are a great number of resonances,
this will lead to strong absorption of incident light. In fact metallic colloids, such as the
colloidal silver familiar from photographic plates, are extremely black in appearance. We
can show this quantitatively by calculating the reflection and transmission coefficients of a
thin layer of this colloidal structure. The results are shown in figure 14. Clearly the colloid,
in contrast to the metal, neither transmits nor reflects in a wide band of frequencies from the
near infra-red into the ultraviolet. This is a direct consequence of the new resonant modes
introduced by the colloidal structure.
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Figure 13. The electromagnetic band structure of a simple cubic array of aluminium spheres
calculated for loss-free metal with a dielectric constant given by (61). Note the characteristic
structure which consists of a large number of extremely flat bands: these are surface plasma
modes of the metal spheres, found in the range 15/

√
3 eV to 15/

√
2 eV for isolated spheres,

but in this instance spread to a lower range of energies by interaction between spheres. The
free-space dispersion relation is shown as a dashed line, and clearly interacts strongly with the
surface modes.

Figure 14. Reflectivity and transmissivity of solid aluminium, left, and that of a colloidal array
of 16 Å radius aluminium spheres filling 12% of the sample volume. The thickness of material
considered is 3385̊A.

These resonances are also believed to be responsible for surface-enhanced Raman
scattering observed at rough silver surfaces [23, 24].
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Figure 15. A schematic figure of a solar panel
showing how the strong absorption in the visible, and
weak absorption in the infra-red, of a metal colloid is
exploited to give an efficient solar panel.

Figure 16. The stopping power, as a function of the
energy quantum lost, observed by Howie and Walsh
[25] for 50 keV electrons passing through an aluminium
colloid, compared to our theoretical estimate based on
the band structure shown in figure 13.

An interesting aside is that this effect has been exploited for some time in solar heating
panels. Coating a layer of polished metal with metal colloid suspended in glass gives a
composite which is strongly absorbing in the visible and near infra-red, but reflecting in
the far infra-red. Hence the panel absorbs solar radiation efficiently, but retains the heat
because it is a bad emitter in the far infra-red. Figure 15 shows a schematic arrangement.

This high density of states means that colloids are very effective at extracting energy
from fast charged particles [26, 27]. Essentially this can be regarded asC̆erenkov radiation.
Reference to figure 13 shows that the group velocity of the resonant modes, as defined
by dω/dk, is much less than the velocity of light, given by the slope of the dotted lines.
Therefore a moderately fast particle such as a 50 keV electron will stronglyC̆erenkov
radiate. We show in figure 16 some electron energy-loss data obtained by Howie and Walsh
[25] in experiments on aluminium colloids compared to theory given by Martı́n-Moreno,
and Pendry [28, 29]. There is very strong absorption in the region of the resonant modes.

8. Conclusions

I hope that this review has shown photonic theory to be in good shape, despite its
rapid development. Certainly we have an excellent capability for calculation of band
structure in periodic dielectrics and the main challenge in photonic band-gap materials
is their manufacture and integration with electronic technology. There are many promising
developments in this respect and it cannot be long before the first structures having band
gaps at visible frequencies emerge.

For the moment the microwave region of the spectrum is the most accessible
experimentally and provides a testing ground for theory. However, there are many
potentially valuable applications to microwave technology particularly of complex metallic
structures, and this area of application should be recognized as valuable in its own right.

Another experimental tool which has much to offer is the electron microscope.
Long used to study microstructured materials, electron microscopes have also developed
sophisticated methods for measuring electron energy loss of the order of 10 eV or 20 eV
and provide a valuable tool for studying the density of electromagnetic states in structured
materials. A community of theorists concerned with the impact of radiation on solids [26]
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has for some time been studying what are essentially photonic effects, and have much to
contribute to the debate.

For the future, theory still has many challenges. This is particularly true for metallic
structures, which as we have indicated show unique and complex effects. The computational
methodology for handling such systems has only recently become available through the
adaptive-mesh approach [20] and will be applied in the next few years to probing new
structures, especially those of microwave significance.

Finally there is the link between electromagnetic properties and forces acting within
photonic structures. These vary from the relatively weak Van der Waals forces acting
between dielectric spheres, which may play a role in self-assembly, to the much more
powerful dispersion forces acting between metallic surfaces separated by distances of only
a few ångstr̈oms. This electromagnetic analogue of the electronic total energy calculation
remains to be investigated in detail. The computational techniques are all in place and await
application.
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